
PHYSICAL REVIEW E 69, 021801 ~2004!
Transverse fluctuations of grafted polymers
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We study the statistical mechanics of grafted polymers of arbitrary stiffness in a two-dimensional embedding
space with Monte Carlo simulations. The probability distribution function of the free end is found to be highly
anisotropic and non-Gaussian for typical semiflexible polymers. The reduced distribution in the transverse
direction, a Gaussian in the stiff and flexible limits, shows a double-peak structure at intermediate stiffnesses.
We also explore the response to a transverse force applied at the polymer free end. We identify F-Actin as an
ideal benchmark for the effects discussed.
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Healthy cells require an efficient and complex transp
network to carry out the overwhelming number of tasks t
are needed to accomplish their function. This network, a
known as thecytoskeleton, is formed primarily byfilaments
~actin filaments, microtubules, and intermediate filamen!,
linked together by a large collection of accessory prote
@1#. A complete description of the structural and mechani
properties of these filaments is therefore essential in orde
unveil the mechanical properties of the entire cell. Advan
in the field have been significantly promoted by a unique
of optical and mechanical techniques which allow to visu
ize and manipulate single cytoskeletal filaments@2–4# and
DNA @5#. Fluorescence videomicroscopy@6# and nanoma-
nipulation @7# can be conveniently used to obtain quantit
as the distribution function of the end-to-end distance@6# or
the mechanical response to an external force in great d
and at the single molecule level. These quantities are a
nable to a direct comparison with theoretical models.

The main material parameter in the description of a po
mer filament is its persistence length,,p . It is defined as the
typical length over which correlations of the tangent vect
of the filament contour decay. Polymers are considered to
flexible when their persistence length is small compared
their total lengthL, or tªL/,p*10. In this limit, they can be
well described by the minimal model of the Gaussian Ch
@8#. Polymers of biological importance, e.g., F-actin, are
ten semiflexible, meaning that their persistence length
comparable to their total length. While flexible polymers a
dominated by entropic effects, the statistical mechanics
semiflexible polymers is strongly affected by their bendi
energy and the close vicinity of the classical Euler instabi
for buckling a rigid beam@9#.

The distribution functionP(RW ) of the end-to-end vecto
RW , a simple Gaussian for a flexible polymer, is peaked
wards full stretching and is completely non-Gaussian@10#.
The mechanical response of a semiflexible polymer is hig
anisotropic, depending on the direction in which the force
applied@11#. These findings result in bulk properties of s
lutions and networks that are completely different from t
isotropic elasticity of flexible polymer solutions@12,13#. In
addition, the inextensibility constraint becomes crucial in d
termining the approach to full stretching upon the applicat
of a forcef, as reported by Marko and Siggia@5# for double-
stranded DNA.
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Here we investigate the mechanical and statistical prop
ties of a single chain grafted at one end, a problem of dir
relevance for force generation in cellular systems. The ot
end is either free or subject to a constant transverse fo
whose magnitude extends into the nonlinear regime. We
strict ourselves to a two-dimensional embedding space, s
in most experiments, fluctuations in one direction are
verely restricted, or cannot be observed. The generaliza
to a three-dimensional space is straightforward and will
reported elsewhere@14#.

We refer to the wormlike chain model introduced b
Kratky and Porod@15#. In this framework, a polymer confor
mation is represented by a succession ofN segmentstW i ,
whose direction is tangent to the polymer contour at thei th
segment. Since the polymer is assumed to be inextensible
segmentstW i have a prescribed lengtha5L/N. The Hamil-
tonian is given by

H52« (
i 51

N21

tW i• tW i 112(
i 51

N

fW• tW i , ~1!

where« is the energy associated with each bond andfW is a
force eventually applied to the second end. It is also poss
to define a continuum limit fora→0, N→`, with Na5L
ande5«a2/N held fixed. The Hamiltonian in Eq. 1 is the
equivalent to the following functional@16,17#:

Hf5
k

2E0

L

dsS ] tW~s!

]s
D 2

2 fWE
0

L

ds tW~s!, ~2!

where k5eL and tW(s) is the tangent vector of the spac
curve rW(s) parametrized in terms of the arc lengths. The
inextensibility of the filament is imposed by the local co
straint u tW(s)u51. The continuous version of the wormlik
chain has been successfully used to obtain various statis
quantities, such as the tangent-tangent correlation functio
moments of the end-to-end distance distribution@16,18#. It
has been recently used to obtain the radial distribution fu
tion @10# and force-extension relations@5,11,19#.

We have developed a Monte Carlo simulation to inves
gate the behavior of a semiflexible polymer in the proxim
©2004 The American Physical Society01-1
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of the limit t→1. The rationale behind this choice is th
search for clear hallmarks of the onset of the ‘‘semiflexib
nature of a filament. In this intermediate limit, analytic
results are difficult to obtain: typical approximation schem
that build on either Gaussian chains or rigid rods are outs
their validity range; hence, computer simulations beco
crucial. The first end of the filament is assumed to
clamped, i.e., the orientation of its tangent vector is h
fixed along a direction, named thex axis. The second end i
left free to assume any possible orientation. The initial c
figuration has been randomly chosen in the proximity of
full stretching condition, thus ensuring a fast convergence
equilibrium. A new configuration is generated by changi
the orientation of one segment, and accepted according to
standard Metropolis algorithm and the discrete Hamiltoni
Eq. ~1!. Effects resulting from self-avoidance are not cons
ered, but we notice that configurations where the chain fo
back onto itself are strongly energetically suppressed for
ficiently stiff polymers. Results ceased to depend on
number of segments forN550. On the order of 106 Monte
Carlo steps per segment were performed, and results w
averaged over different runs, obtaining a perfect agreem
between measured expectation values of the end-to-end
tance^R2& and ^R4& with known exact expressions. The r
dial distribution function was calculated and coincided w
the analytic results in Ref.@10# within the accuracy thereby
reported.

Here we are interested in the probability distribution fun
tion P(x,y) of the free end in the plane determined by t
direction of the clamped end (x axis! and the transverse on
(y axis!. This quantity is directly accessible to experimen
allowing for a quantitative comparison with our prediction
We will also consider the reduced distribution functio
P(x) and P(y), obtained by integratingP(x,y) over the
variablesy andx, respectively.

It is important to notice that when both ends are free,
radial distribution function is rotationally invariant and
therefore only a function of the distanceR between the ends
Clamping one end breaks rotational symmetry and lead
distinctly different longitudinal and transverse distributio
functionsP(x) andP(y). Nonetheless, the broken rotation
symmetry does not affect the total energy of the configu
tion. This implies, and is in fact confirmed by our simul
tions ~data not shown!, that the longitudinal distribution
function P(x) coincides with the radial distribution functio
P(R) of the end-to-end distance, apart from a constant n
malization factor. The characteristic feature of this functi
is a crossover from a universal Gaussian shape centere
the origin with a characteristic width determined by the
dius of gyration to yet another universal shape@10#, whose
peak is shifted towards full stretching and whose width
determined by a new longitudinal length scaleL i}L2/,p .

This has to be contrasted with the transverse distribu
function. Not surprisingly, given the intrinsic isotropy o
flexible polymers, the distributionP(y) is a Gaussian and
identical toP(x) for high values oft. In the stiff limit, P(y),
at variance withP(x), is again a Gaussian centered aty
50, whose width is now given by a new transverse len
scale L'5A2L3/3,p @20,21#. Surprisingly, at intermediate
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values the probability distribution function is not a smoo
interpolation between these two Gaussian limits but sho
interesting and qualitatively different features. Ast ap-
proaches the value 1 from above~flexible side!, the Gaussian
peak is first smeared out into an intrinsically non-Gauss
flat distribution@see Fig. 1~a!#. At t52.8 ~see the inset!, the
distribution contains three local maxima, but ast is de-
creased, the central peak aty50 loses weight to the two
symmetric peaks off the x axis. The double-peak structur
most pronounced aroundt'1.5, i.e.L'1.5,p .

As the stiffness is increased,P(y) recovers its flat struc-
ture, as shown in Fig. 1~b!. Notice also@inset of Fig. 1~b!#
that att50.75 the two peaks start to compete with a growi
peak centered aty50, such that one finds a triple maxim
shape again. Although intrinsically non-Gaussian, this c
tral peak will eventually tend to a Gaussian distribution
the stiff limit. The reentrance from the double-peak structu
to a flat distribution is a genuine hallmark of semiflexibilit
This effect cannot be explained by analytical calculatio
using a harmonic~or weakly bending rod! approximation,
whose prediction forP(y) would be a Gaussian centered
0 @20#. Higher-order cumulant expansions about a Gauss
distribution have also failed to provide a fast convergence
our P(y). An entirely analytical solution can be provided b

FIG. 1. Distribution function for the projection of the free en
along the transverse directionP(y) obtained by Monte Carlo simu
lations. Lengths are measured in units ofL. Errors are comparable
to the point size in the insets.~a! Appearance of double peaks fo
t&2.5. ~b! Reentrance from the double peaks to a flat distribution
the stiff limit t&0.75. Insets show details of the crossover regio
1-2



bi

e
ce
s
ap
th
i

tin
-

in
s

ua
y
ed

he
s,
re
n

h
gs
e
u
th
h

he
le
e

om-
il-
-

emi-

he

of

e

n. In
ct
d
nse
si-
u-
he

-
bl
t.

arlo

ith
y.

TRANSVERSE FLUCTUATIONS OF GRAFTED POLYMERS PHYSICAL REVIEW E69, 021801 ~2004!
the eigenfunction approach described in Ref.@22# for persis-
tent random walks, although the connection to our proba
ity distributions would only be numerical.

Finally, let us emphasize that the double-peak structur
P(y) does not indicate a bistability in the constant for
ensemble. As shown below, linear response theory lead
positive force constants in this regime. What actually h
pens under the application of an external force is that
distribution function becomes asymmetric and weight
shifted from one peak to the other. In an experimental set
with a fixed transverse distancey and a correspondingly ad
justing force, one would probeP(y) directly and be able to
observe a kind of ‘‘bistability.’’

Further insight can be gained by the inspection of the jo
distribution functionP(x,y), represented with density plot
in Fig. 2. In the stiff limit,P(x,y) should be confined to the
classical contour obtained by applying the elasticity eq
tions to a rigid rod. This contour can be approximated b
parabola in the proximity of full stretching and is obtain
through elliptic functions for any deformation@9#. In Fig.
2~a! the classical contour coincides with the ridge of t
probability distribution function. As we relax the stiffnes
thermal fluctuations will make the tip of the filament explo
the configuration space in the vicinity of the classical co
tour. Roughly speaking, transverse~bending! fluctuations en-
hance fluctuations along the classical contour and s
weight from the center to the upper and lower wings in Fi
2~a! and 2~b!. In contrast, longitudinal fluctuations widen th
distribution function perpendicular to the classical conto
Since for a semiflexible polymer, the corresponding leng
L i andL' scale differently~transverse fluctuations are muc
‘‘softer’’ than longitudinal ones!, upon lowering the stiffness
P(x,y) gains more weight in the wings rather than in t
center. It is precisely this effect that gives rise to the doub
peak distribution, whenP(x,y) is projected in the transvers

FIG. 2. ~Color! Density plots obtained by Monte Carlo simula
tions: dense regions are colored in red, scarcely populated in
on a color scale appropriately chosen to enhance the contras~a!
t52/3; ~b! t51; ~c! t52; ~d! t520.
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direction @see Fig. 2~b!#. Eventually, in the flexible limit,
where transverse and longitudinal fluctuations become c
parable,P(x,y) is spread so as to cover almost all the ava
able space@Fig. 2~c!#, before the isotropic Gaussian distribu
tion is recovered@Fig. 2~d!#.

We have also explored the transverse response of s
flexible polymers by applying a constant forcef in the trans-
verse direction. The effect of a small applied force on t
average end-to-end distance~or force extension relation! has
been studied within linear-response in Ref.@11#. In this work,
we will consider the effect of an external transverse force
arbitrary magnitude on the average positions^x& f and^y& f of
the free end.

In general, we expect̂y& f to have the same parity of th
applied force, and hence to be odd, while^x& f should not
depend on the sign of the force and hence should be eve
the continuum limit, it is possible to write down the exa
expressions for̂x& f and ^y& f and to show that the expecte
parities hold on very general grounds and that the respo
of the longitudinal extension to a transverse force is intrin
cally nonlinear in the small force regime. Monte Carlo sim
lations confirm these predictions, as shown in Fig. 3. T
response in the direction of the clamped end is even inf and

ue

FIG. 3. Response to a transverse force, obtained by Monte C
simulations. Forces are measured in units ofkBT/L, lengths in units
of L. Error bars are shown.~Above! Response in the clamping
direction.~Below! Response in the transverse direction is odd w
f: only part of the explored parameter region is shown for clarit
1-3
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it can be approximated by a parabola centered on thef 50
axis. The response in the transverse direction is odd inf and
shows the same reentrance phenomenon reported in Ref@11#
for the linear response coefficient.

Note that while in the case of a longitudinal force, t
approach towards full stretching~or saturation! can be calcu-
lated within the weakly bending rod approximation, this
no longer true for transverse forces. The position of the f
end can be calculated from classical elasticity theory@9# and
expressed by means of elliptic functions. Only in the hi
force regime or in the stiff limit, when fluctuations becom
unimportant, results from our simulations coincide with cla
sical elasticity theory.

The effects hereby reported are amenable to a direct c
parison with experiments regarding cytoskeletal filaments
even DNA. For instance, optical systems might be used
get thex or y projection of the radial distribution function fo
a particular class of semiflexible polymers. For F-actin w
,p'16 mm @6#, the double-peak effect should be well vi
ible for a range of lengths, 12mm&L&43 mm. In this pa-
rameter range the difference between the central rela
minimum and the double-peak maxima results in 10% of
total length~see Fig. 1!, in the range 1 –4mm that is well
above the experimental precision of 0.05mm reported in
Ref. @6#. Hence F-actin would provide an ideal benchma
for the effects we report. We emphasize that the double-p
on

-
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structure is a clear hallmark of semiflexibility and hence
might be used to obtain a rough estimate of the persiste
length of a particular polymer filament, such as, for instan
the nanometer sized stalks of kinesins and myosins.

In summary, we have presented evidence from exten
Monte Carlo simulations that the parameter region cor
sponding to semiflexible polymers is hallmarked by the a
pearance of a series of effects in the radial distribution fu
tion and in the response of the clamped polymer to
external transverse force. A semiflexible polymer show
distinct anisotropy in the probability distribution function o
the free end along the direction of the clamped end. At in
mediate stiffness,L',p , the distribution function shows a
pronounced double-peak structure in the transverse direc
Semiflexible polymers have been previously reported@11# to
be anisotropic objects, i.e. to respond in different ways
forces applied in the clamping or transverse direction. H
we have shown that even their response to a force along
transverse direction alone is intrinsically anisotropic, be
linear in the transverse direction and nonlinear along the
rection of the clamped end in the small force regime.
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